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Localization of the Eigenvalues of Linear Integral Equationcg
with Applications to Linear Ordinary Differential Equations

by

-
James M. Sloss and Stan K. Kranzler

Introduction: In this paper we consider integral equations of the

form:

(1) @(®) =X [ K{P,Q)9(Q)dQ + £(q)
D

where D 1is a bounde ! measurable set of Rd, Euclidean space of dimension
d, K(P,Q) is defined and square integrable over D x D (not necessarily
symmetric), f is defined and square integrable over D and ¢ is the
inknown function.

It is our purpose (i) to show that the eigenvalues of (1) can be
ipproximated by the reciprocal eigenvalues of a finite matrix Km = (Kij)

»f order m that is easily determined from K, (ii) to derive an explicit
srror estimate for the approximation that depends on K and m and (iii) to
apply the results of (i) and (ii) to the problem of effectively approximating
;he eigenvalues of a self adjoint ordinary differential equation.

Let us form, for some complete orthonormal set in L2(D), the matrix
3Kij) of Fourier coefficients of K. We shall show (Theorem 1) that the
?roblem of finding the eigenvalues and eigenfunctions of (1) is equivalent
;o the problem of finding the eigenvalues and eigenvectors of the infinite
matrix (Kij)' Having done this, we shall prove (Theorem 2) a generalization

of the Gerschgorin circle theorem that applies to the infinite matrix ( Kij)'

* The autho:* wishes to greatfully acknowledge squort for this research by
the National Aeronautics Space Administration,”NASA Grant NGR 05-010-008.
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In theorem 3, we shall consider the case when an upper left hand square
matrix Km of (Kij) is similar to a diagonal matrix and show that the
eigenvalues of (Kij) lie in the union of circles ceatered at zero and
the eigenvalues of A, with radii depending cnly on m, those Kij for
l=sis<sm Jjz2m+1l, and the norm of the matrix used t> diagcnalize Km.
Moreover, exactly as many eigenvalues, counting multiplicitiec, lie in each
connected component as circles that make up the component. When the matrix
K" is symmetric, the radii depend .a1ly on m and Kij’ l<i=<smn,
J2m+ 1

In the event the radii diminish with m, the explicit bounds on the
radii can be used to give error bounds on how closely the eigenvalues of
the upper lcft matrix approximate the reciprocal eigenvalues of (1). Thus
the problem of finding eigenvalues of (1) to a prescribed degree of accuracy,
redrces to choosing m Jjudiciously and then computing the eigenwvalues of
the m X m matrix. .

We apply the results to self adjoinf ordinary differential equations.
In this case K Dbecomes the Green's function (or a minor variant of it)
and the eigenvalues of the differential equation are those of the integral
equation. Using the complex ~xponentials as the orthonormal set, the matrix
(Kij)’ whose reciprocal eigenvalues are the eigenvalues of the differential
equation, is made up of the Fourier coefficients of the Green's function,
moreover (Kij) is symmetric. The error estimate can be written as Arm(n),
where n 1is the order of the differential equation, A 1is a constant

depending on the Green's function and the differential equation and

(2) r (n) =0

The error estimate for second order equations, though of theoretical interest,

is of little practical value. For fourth and higher order differential



equations the estimate, because of (2), proves to be of great practical
value. By consulting a taole for rm(n) and computing A, the size of
the matrix (Kij)’ that will give desired accuracy, can be determined by
inspection. A table for rm(2) and rm(h) is given.

As specific illustraticns of the method, we choose the fourth order
equation governing the transverse displacement of a whirling shaft fixed
to rotate between ball bearings at each end, see [ 7, p.442]. The eigen-
values for this problem are known. In order to illustrate how the method
can be adapted to second order equations, we chose the equation governing
the motion of an inhomogeneous string, fixed at one end and restricted to
move transversally by an elastic force at the other end. We convert this
problem to an equivalent fourth order differential system, and apply our
method to approximate the eigenvalues. The results are compared with those
of Collatz [ 3, p.257] who has bracketed the first few eigenvalues.

For references to the literature, see e.g., [ 1], [2], [3], [51],
(6], [8], [ 9], [10]. The method developed in this paper, as applied
to differential equations, is dependent on finding the Green's function
and thus its use is more restrictive than the variational methods. How-
ever, because of the error estimate, the problem of finding an upper bound
for an eigenvalue and the problem of finding a lower bound for an eigen-
value (in general a much more difficult problem) are solved simultaneously,
and to any preassigned accuracy.

Since working out the results of this paper, wé have come across the
results of Losch [ 6], who proved that the eigenvalues of (Kij) converge
to the reciprocal eigenvalues of the integral equation with ternel K.
However in his paper he did not derive an error estimate.

We would like to express our deep gratitude to Charles Akemann for

carrying out the numerical computations involved in finding the matrices
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(K )m and the corresponding eigenvalues used in the two illustrations.

1J

§1. Equivalence. In this paragraph we prove the equivalence of the

given integral equation with an infinite system of linear equations. Before

proving the theorem we prove two lemmas.

Lemma 1. If K(P,Q) is a complex valued function in L,(GXxG),

2

{ori (P): i=1,2,...}, is a complete complex-valued orthonormal set in

L,(G), and o(P) € L,(G) then for

B;(Q) = fGK(P,Q)ai(P)dP

@

(1.1)  k(P,Q)9@), ®Q) ) o (P) B,(@) €Ly(6) for almost sll P,
j=1

(1.1.1)  K(P,Q9@), ®Q) ) a(P) B;(Q) €L,(6) for almost all q,

3=1
and

(12) ] K(P.Q)p@)R - J‘ch(Q)zl a,(®) 8,(Q)aQ  for almost all P,

{1.2.1) j‘K(P,Q)dP =j‘ Y o.(P) B.(Q)dP for almost all Q.
G St J

Proof. To show (1.1) and (1.1.1) it suffices to show that K(P,Q)

and

©

(1.3) ), «® 5,@)
J=1

are equivalent L2(G XG) functions since then by Schwarz's inequality:
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[ [ |k, )eQ)a & = [ [ |k(P,Q)| aPda [ |o(P)|°aP measure G
G G G G G

and thus by Fubini's theorem K(P,Q)yp(Q) € Ll(G) for almost all P and
in Ll(G) for almost all Q. Similarly (1.2) will follow upon showing

K(P,Q) and (1.3) are equivalent L2(G xG) functions.

Note
n

hn(Q) Ef |kK(P,Q) - z o:i(P) Bi(Q)ladP~0 as n-o, for almost all Q in G,
¢ i=1

since [cxi(P)} is a complete set in L2(G). Thus given any ¢ > 0, by

Egorov's theorem, there exists a measurable subset G of G such that

€
fa h (Q)dQ <3

and the measure of G/G < —= 5. Also
8||x||
2

n

n
[ IKE.Q) - ) o8 @@ < 2{J Ixw@) P+ [ | ) o) 8,(@)|%ap |
i=1 i=1l

n
< 2[IGIK(P,Q)|2dP + izllai(a)zj

< ufG |kK(P,Q) |2 dap

where use has been made of the orthonormality of o and Bessel's inequality.

Thus

n
k() - ) a®B @2 =[n @a=( + )n@c
i=1 E a/c “G

€ 2 €
s =S L[K|Z + £ e
2 E B
8llx||3

which proves the assertion.



Next we prove

Lemma 2. Let K(P,Q) € L,(GxG), o (P) and B;(P) be as in

Lemma 1. Then

o (P) B,(Q) € L,(G) for almost all P in G and

e
L}
HMS

(1) if o(P) € L2(G) then for almost all P in G

@

J o) o®) 8@ v@)a = ) @ [ 8 Q) o).
Gy i=1 ¢

Moreover, for C, = f w(P)Bi(P)dP we have
>

ch akZQS € Ll(G). Similarly
k=1

(i1) if ¢ = (cy,C ) € 4, then

2’.“

I3 zlck 2 (@) B,(Q)aq = klek [ 85@) 3@ a.

Proof: Note that by lemma 1, Schwarz's inequality anu compactness

@

) %@ B,@) €L (6x06).
i=1

Applying Fubini's theorem we obtain

zz ai(P) Bi(Q) € Ll(G) for almost all P.
i=1

By the Riesz-Fischer theorem we obtain immediately that



) G % @) € L,(6).

k=1
and by Schwarz's lemma it is also in Ll(G)'
(i) Let &
() = ) o (P) B, (@) ¥(@)
i=1
and
n
5.(P,Q) = ) a(P) B,@) o@)  (n=1,2,...).
i=1

First note that

2
[ ] 180) -5,(2.0) |00 p < |6|? [ ] 18G.Q)-5,(.0)} @ o,

where |G| = measure of G. Now
@
2 2
[ ] 1s@Q) -5, (2,0) % ap < ) [8I llelf .
G G
ke=r+l

Here use has been made cf Schwarz's lemma, and Parseval's equality. Since

@ @

2 2 2
Z B JI5 = |K||; we see that 1im £ ||B. IS = O and thus
k=1 &2 . k=n * 2

lrilm J‘G j‘G |s(P,Q) - Sn(P,Q)IdedP = 0.

Applying Fatou's lemma we obtain

J (1im [ |s(P,Q) -8 (P,Q)|aQ]aP = 0
G n G
-and hence

lim [ [8(P,Q) -8 (P,Q)|dQ = O for almost all P in G.
s

But this clearly implies the conclusion.



(i1) Similarly, since

\ w (O 2 —_—
], ), ¢ %@ 8,(@) & <[ 5@ @ [ ] ) %® |*«

k=n k=n

< K2 ) Ic,|?
k=n

where Schwarz's inequality, Bessel's inequality and Parseval's equality

have been used. The result follows.

Now we are in a position to prove the equivalence theorem viz:

Theorem 1. (Equivalence of integrel equation with infinite system

of linear equations) Let {aa(P): J=1,2,...} be a complete orthonormal

set in L,(G) and let K(P,Q) € L,[GxGJ. Consider the integral equation

(1.4) y(P) = p fGK(P,Q)w(Q)dQ.

Let A De an eigenvalue and ®(P) be a corresponding function in .,(G)

of (1.4). Let

(1.5) ' 5,(@) = [ K(7:Q) o (P) a,
(1.6) Ky = ijGx(P,Q) o (P) o, (Q) aPaq

(1.7) c; =[P, (P)ar.



Then A is an eigenvalue for the infinite system

(1.8) xi-uZﬂﬁJ
J=1

and C = (Cl,Cz,...) is a corresponding eigenvector in 12.

Conversely, if )\ 1is an eigenvalue of (1.8) and C = (01,02,03,...)

in 1,2, is a corresponding eigenvector and

(1.9) () =1 ) ¢, a(P)
i=1

then A 4. an eigenvalue for (1.4) and o(P) is a corresponding eigen-

functiva in L,(G). Moreover

(1.10) lloll = []llc

Proof: Assume A\ is an eigenvalue and @(P) is a cor.responding

eigenfun:tion of (1.4) which is in L.(G). By lemma 1, we obtain for

2(
almost all P in G

#(e) = [ o(@) ), (@) B,(a)a
j=1

=2 J}_:l @) [ 9(@)8,@)a@ by lema 2

= A 2 aJ(P) cy ' by (1.7).
3=

Substituting back into (1.4) for @ we obtain
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(1L.11) Z ay(P) ¢y = A Z @, (P) ) | @[ ) 3— % @) ¢, [
kel

@

=\ }. P)[x ). Cy j‘s(Q) °’k(Q) dQ] by lemma 2.
J=1 k=1

But j'st(Q) o (Q) &Q = jGJ‘Gx(R,Q) os(R) o (Q) dRdQ = K, . Thus since

Jk
the ai(P)'s are linearly independent the ‘. and C, satisfy (1.8).

i
Next note that

chl Zlfqomsj a2 = ol ) 18, 1P = loll? [k
j=1

where use has been made of Bessel's inequality. Thus C is in ‘é and

the first part of the theorem is :stablished.
The argument is reversible and thus if )\ is an eigenvalue and C

a corresponding eigenvector in 12, of (1.8), then ¢ defined by (1.9)

is an eigenfunction corresponding to the eigenvalue A of (1.4). We showed

in lemma 2, @, as defined by (1.9), is in LZ(G)' But since the o

are orthonormal

2 2 2
lel® = IM? ) e
§=1

§2. Localization of eigenvalues. Because of the equivalence of the

integral equation with the infinite linear system, expressed in theorem 1,
it suffices to study the location of the eigenvalues of the infinite system.

The localization of these eigenvalues is expressed in theorems 2 and 3.
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Theorem 2. Consider the infinite system

2
(1.8) lxij X,y where z |K1J| <,
i,J=1

Given any €56, > O choose m and q such that

[+ <) o . -
2 €
(2.1) 2 z lxijl < ’2—1 and z Z Ixijl 2 ’
i=m+l j=1 J=q+l i=1
and let

P = 2m foula, l<ksm

Jfk
and
2 2
= o) kI3 15 sq.
k#J

Let A\ Dbe an eigenvalue of (1.8) and C = (Cl’CZ""') be a corresponding

eigenvector in 4 Then A lies in

s
m
(2.2) U |z-Kkk| < pk} U {z: |z| < €
and in
(2.3) &{ |z - K, .| J U {z: |2! }
i z: |z~ <y z2: |2) < ¢
el il 2

Moreover, each component of (2.2) (resp (2.3)) contains exactly as many

eigenvalues as circles, where the eigenvalues and circles are counted with

their multiplicities.

In the case (1.8) corresponds to the integral equation (1.4), then *

(2.1) becomes

o]
2 o«

(2.1.1) Y BB <F, ) lelE <2

i=m+l J=q+1

11l
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Proof: Let A be an eigenvalue of (1.5) (without loss of generality
assume A #0) and C = (Cl,Cz,...) be a corresponding eigenvector of

unit length. Then

(2.4) (x-xg‘k)ck = ZKKJCJ’ (k=1,2,3,...)
I’k
Note that
2 |
(2.5 Y ey <[ Y ic,lT
J=m+1 J=m+1
" =12 2
s[L DR ) xpe ]
S=m+l k=1
12 © F G 2
s WHE Y[ L Ikl P el ]
j=m+l k=1
1,2 U : 2
< A7 E} §:|xjk| P
J=m+l k=1

 + g |k| < ¢ the result is clear. Assume that |\| 2 €. Then by (2.7) and (2.1)

@ [ee] (e o]
2 2 © Z g .2
(2.6) z |CJ|, 2 5l | IKjkl <3
Jj=m+1 J=m+l k=1
and there exists 1 < 4 <m such that lczl‘2 > (2m)'1. Hence (2.4)

becomes

2 -2 2 2
n=Kyl? = logl™ ) 1x,12 ) Ic,|
J#L J#L

s fe 1=, 1?1 ) Ix,l®
It

< 2m - E:Ingla‘
i

——— —— . —— -



The conclusion (2.2) follows immediately. (2.3) follows analogously and

the argument involving components follows exactly as in the case of
Gerschgorin circles.

Consider now the integral equation (1.4) and the corresponding system
(1.8). By the definition (1.5) of B,(Q), it is clear from Schwarz's

lemma that Bi(Q) € L2(G) and thus it has an expansion

8,@) = ) K, o (Q)
k=1

where the K, 's are given in (1.6). Thus

@ w

Lleglf = ¥ ey Pe

i=m+l i=m+1

@ 4]

- ) leik|2

i=m+l k=1

by Parseval's equality, which concludes the proof. (Z.3) follows similarly.

Next we shall apply the results of theorem 2 to a particularly important

special case, i.e., when the upper let't matrix of the infinite system is

similar to a diagonal matrit. These results are given in:

Theorem 3. (Consider the infinite system

@
(2.7) X, = ZKi.ij’ Ki,j is in general complex.
J=1

Let T Dbean m xm matrix for which

13
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fl 0
7 K% = F = f (T is in general complex)
f
bo m_«
where
K = (K )P0 1si,j<m
and
m m
Y 2 2 2 2 2
(2.8) 2|t3k| <12, Z|Tdk| <t2, t2m>1,
J:l k=
where T = (t,.) "t (1..). Let
® m
2 2 2 2 2
P =t L leljl S R Tt
J=m+l [=1

2 2 v ¢ 2 > -~ 2 2 2
G =% L leul » S, B Qs Syag..
k=m+l =1 ~

If A is an eigenvalue of (2.7), and (C ..) a corresponding eigen-

12Co2-

vector in 4,, then A lies in

m
(2.9) kL_Jl{z: |z-fk| <r }U {z |z | <ro}
and in

m
(2.10) jLﬁl{z: lz-£,| <s } U {z: |z| < sy}

Moreover, each component of (2.9) (respectively (2.10)) contains exactly as

many eigenvelues as circles where the eigenvalues and circles are counted

with their multiplicities.

Proof: Let

B=(K.,) e = v m+1l<j



id
D=(Ki:j) m+1lsi, m+1l<}j
%) o]y froo] [Fo1B
K= (K, = K = | ‘
47 o 1]l iJJ [_o 1| ler »p |

Note that 12 has the same eigenvalues as K. If we let

@

(2.11) E: = 2m Z|Rk3|2 = 2m Z Il?kjlz, 1<k <m,
i#k Jj=m+l
and
e . il -
(2.12) sz = 2m Z‘|xkj|‘2 = 2m z |1ck3|2, 1sj<m
k#J k=m+1

then we can conclude from theorem 2 that the eigenvalues of K 1lie in

m
(2.13) U {z: Iz-fkl < Ek} U {z: |z| < el}

k=1
ard in

m -~
(2.14) U {z: Iz-fdl < Y;j} U {z: |z] < 62}

J=1
where

@ @ 2 ¢ <] @®
WoE - el e e

(2.15) Z leijl s 2 Z zlxi;)i Y

i=m+l j=1 j=q+1 i=1

But for lsksm, m+ls<j

s |
5§ 12 2
(2.16) PR TRE e TR A
=]
m m
2 2
£l e
=1 =1

m
2 2
s4f ) Ix.1°.
L=1
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Thus combining (2.11) and (2.16) gives

~2 2
(2.17) P S 2n to z 2 lKLJI r l<ks<m,
j=m+l A=1

and similarly

(2.18) §§ < 2m t ZU(MI =si, 1<jsm.
k—m+l =1
Finally we note that
o ® ® @ ® m
z z|i13|2= 2 Z |K1.1|2+ 2 zlki:ilz
i=m+l j=1 {i=m+l j=m+l i=m+l j=1
© @ ® m
: z Z |xiJ|2+ Z Z|(CT)1J|2
i=m+l j=m+l i=m+l j=1
o @ : m m
. Z Z ﬁﬂ2+ L EEZIZ&qu]
i=m+l j=m+l i=m+l j=1 £=1
m
e 33 mgle 3 [N LY w3 iyl
i=m+l j=m+l i=m+l J=1 i-_ L=1
P 55 [ EZ IKiJ|2 EE - iz‘

i=m+l J=m+l

@ [o]
2 : 2 : 2
< mtg z z ‘Kij| since mty > 1
i=m+l j=1

2

Thus for the ey of (2.15) we can take s,. Combining (2.13),(2.14),(2.17),

o°
(2.18) and (2.19) we obtain the conclusion (2.9) and similarly (2.10).



17

; "
R edvatoo,

Corollary. In the event that K" is symmelrie we can take ty = 1.

Proof. This follows, since for T we can take an orthogonal matrix,

thus each row and column has Euclidean length one and T/ = T-l.

§3. Application to ordinary differential equations. Consider the

ordinary differential equation of degree n 22
(3.1) L{u] + au = r(x)
on the interval [0,4] with the system of boundary conditions

(3.2) Mi[u] = Ai[u] + Bi[u], 5 Xl iinatts

where

(n)(

Lful = p_(x)ul™ () B x) + oo+ p (xulx) =0, p_Fo,

and Ai[u] are boundary conditions relative to the end point O and
Bi[u] are relative to the end point 4. Let G(x,E) be the Green's
function for this system. Then, as is well known, see e.g. [ 4 ], if the

system is self adjoint then G is symmetric, G(x,§) € cn'z[o,z],

- -1
21 6(g+0, €) - D21 G(E-0,8) = 1/p (E)
X x n
and (3.1) and (3.2) are equivalent to the integral equation

)
u(x) + A fg G(x,E)u(g)ag = £(x)

where

)
£(x) = fs G(x,8)r(§)dE.

In the event we take the orthonormal set to be

“=O,l,2,ooo )
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we can state the following

Lemma 3.1. If G(x,€) is the Green's function of pn(x)y(n)(x) +
(n=1) (5)

pn_l(x)y e +po(x)y(x) =0 on [0,£] with boundary conditions

of the form (3.2), and K(x,8) = p(x)p(€)G(x,E) is the kernel of the

equivalent integral equation p € Cn[O,l] p>0 on [0,2] and

L L L (“‘9' Vt)
sw(K J‘ds f dt K(s t)e :
then
Igu\*l SA\)-n’ n20, v->0,
where
(3.3) A= (5‘-) c
)
(3.4) ¢ = J“Otlnfc"lx(s,on + |D2'1K(s,z)| + 24 sup B(s,t)Jds
(3.5)  B(s,t) = |p(s)]| Z[l( )Ee(e) - a0z (edp,_ (0] + |(307) oELo(e) | ]I02¥a(s,0)] .

k=1

Proof. Let pe(x,é) be the C (R-,-functlon that is 1 for
€ <x < f-€, €<E < L-¢ and has support in the square [0,4] x [0,4£].
If we let

Ke(x’ g) = pe(x,g)K(x,§)

then K® has n-1 ©Dbounded derivatives and

L 2
g, (K) - &, (k%)] =3 ‘fo j‘o |K(s,t) - K(s,t)|ds at.
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This together with Egorov's theorem shows that guv(Ke) converges to
g“v(l{) as € tends to O.
Since K°%(s,t) is periodic of period £, we obtain by integration

by parts that

n-l
guv(xe) g (2i1'\'i> V-(n-l)guv(nz-lxe)

provided Df:'lx #0. Note that pi-l ke #0 for small enough ¢ when

t
n=-1 n-1. _ , : :
D,(, K # 0, and in case Dt K =0 we have K is a polynomial in t of

degree s=n-2. However, since K is of the form K(x,§8) = p(x)p(€)G({x,E)

where G 1s a Green's function and p € Cn[O,z], K has a discontinuity

in its (n-1)®*‘' derivative. By the same argument ac above guV(Dz'l x%
converges to g“V(D:-l K) as € tends to O. Thus for D:-ll( £FO we
have
n=-1
: B __L__) -(n-1) n-1
(3.6) g0 = (z%) v e 0K,
Let
(1 ostss-%, s+£stsz
2
(s-1/2m=-1t)°
1. 2le-1/m-t) : S <h KD iie
m 2m
talest) = <
1 = &
0 8 = 'Zi SvsSsg+ om
2
(s+1/2m-1t)
2(t-1/m-s) 1 1

- — < - HERE
\l ’ 3 + t<s+m
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Then \ym(s,t) is infinitely Aifferentiable with |wm| 1
Now consider

L 2 +g—:—i(us-vt)
ds [ dat y (s,t) F(s,t)e
o m

"

g, (VF) =

0
where
(3.7) F(s,t) = ch"l K(s,t).
Then
eni
L 8 = o= L +=—=(us = Vt)
2m L
Lg, (WF) = [ ds[f +[ ][\ym(s,t)F(s,t)e dt].
(o} 0 8+t
el
Note that
P sy )'%I‘Liwl b wishittie F B
“dt y (s,t)F(s,t)e = | e—— V{ (8,t) F(s,t)e
0 e v 2miv m PN
3; -gﬂi\m

: 8 -
* 2nzivfo o D, (v, (s,t) F(s,t))e

S'Z_fr\'a[lF(s’o)l + 4 s:p B(s,t)]

since W(s,s--,%-) =0 and
el

iDt[‘Vm(s,t)F(s,t)]l |F(s,t)Dt\l(m(s,t) +‘Ilm(s,t)DtF(s,t)| for t on [o,s-él;aj

[\

|F(s,t)| + [D,F(s,t)] ,

where use has been made of the fact that Dt\l{m(s,t) £) for O£t s - ?;L; 5

moreover
D, [¥, (5,8)F(s,t) ]| < By(s,t)

wher
. n

z [( : ) D:p(t) - p(t)pgl(t)pn_k(t)]nz'kG(s,t) | A
k=1

By(s,t) = |[F(s,t)| + |o(s)]




Here wuse has been made of Leibnitz rule and the fact that G satisfies the
differential equation. Use of Leibnitz rule for F and the triangle

inequality gives B(s,t). Similarly

2mi
o i e )
| dty_(s,t) F(s,t)e | = 50y [IF(s,2)| + £ sup B(s,t)] .
8+§];:_ t
Thus
, 2
| £ 8, (VF) | sz [ [[F(s,0)| + |F(s,2)| + 24 sup B(s,t)]ds.
0 t
But

L L
e, (V) - g, (F)| sjods fow:,(s,t)-lllp(s,t)]dt

L L
< sup |F(s,t)]| [ ds |v_(s,t)-1|at
S5t | ‘ro ’ro -

and thus since Y, converges to 1 in L,, means we get that

l’

4
z|gw(p)| < 5o C

and thus from (3.6) a.n’d (3.7)

which is the result.

We are now in a position to state the general
Theorem 4. Let

1 IZ Il/ e +12-%-T(us-vt)
g .. == | ds | dt K(s,t)e
Gl Rl
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and consider the matrix (3pv); WeV = 0, 1,1, «2,2, ..., £, where

m-l . " . m .
L---—z— if m Iis odd and -3 if m 1is even. If fl,tz,...,fm are

the eigenvalues of (guv) then the eigenvalues of (3.1) lie in

m

. o ! .
(3.8) Y {z: |z-£] <r } U {z: |z] <r.]]
where
2
(3.9) r. = 2mp_ , rg = 2mp
with
m/2 -1
2n -2n -
(3.10) p. = mAe[-(g'-—Q— Bn-lg-l -2 z | v] ZnJ
(2a ]t |
for m even and
e (m-1)/2 :
(3.11) p2 = mA?| {em) B -2 Z |v|'2n_J
(2n]! vl
for m odd. B_ is the n'" Bernouili number. (B -3 B =
for occ. B, 28 tae ‘ "V T8 T

B3 = 1%2-, B, = -3%), and A is given by (3.3) of lemms 3.1. Moreover,

each component of (3.8) contains ecxactly as many eigenvalues as circles,

Remark: It is a remarkable fé.ct that the radii of the circles appearing

in (3.0) depend only on the order of the differential equation and A.

Proof. Since (guv) is symmetric, there exists an orthogonal matrix

T such that

m’ =
T \g‘w)‘l‘ F

where F 1is a diagonal matrix with eigenvalues of (gu.v) down the diagonal

and T’ 4is the transpose of T. Thus we can take ty=1 in theorem 3.



Let
{k} = [g](-l)kﬂ, (4] denotes the greatest integer =< 4.

From theorem 3 we obtain

Z E ‘%1 M'

v=orl p=l

- - 2 - 2
) z zlg[ul.{v}l v z'go,[v}l
v+l p=2 v=m+l

But by lemma (3.1)

Isgug, ul” &% 017

where A 1is given by lemma 3.1. We must now consider the cases where m

is even and where m 1is odd.

-

Case 1. (m even) Here we have {m+l] = 5 and thus
n
psa? ) )l
v=m+l p=l
w
-2n 2n
sma?lz2 ) T+ 1317
vem/2 +1
® A m/2 -1 :
saa?l2) ™ - 182 ¥ W™
v=1 w1
2-1
2n _2n -2n m/ -2n
emtlicdeg o (B] - o2 ) ],
(2n]1



2k

th

where Bn denotes the n Bernoulli number.

Case 2. (m odd) Similarly we obtain

- 2n m-1/2 -
pis mAQLLEﬁ—-Bn-z Z lvrenj.
(en]! b

§4. Numerical examples. Since the radii r. of the circles in

Theurem 4 depend only on the order of the differential equation and the

constant A we give below a table for rm/A for n=2 and n=l,

(4.1) m r /A, n=2 rm/A, n=b
L 1.80793 . 366
6 ! 1.40176 117
8 | 1.18939 0532
10 | 1.053 .02937
20 . T34 .00L489
30 .598 .00175
40 .517 .000850
50 L62 .000486

Next we apply the theory to several examples. As a first illustration
we consider a whirling shaft of length 2m see e.s., [7, p.443] that rotates
between bearings at 0 and 2m. The differential equation governing tne

transverse .iisplacement u 1is of the form
u(h)(x) = Au

with che boundary conditions u(0) = u(2m) = u“(0) =u

The Green's function and also the kernel of the integral equaticn fir
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this problem is given by

SSEL [E(E-kmx+x’]  x <8

G(x’g) -

X220 [x(x-4mE+83]  x 28,

and a bound for A is 2 + Lm Combining this with table (4.1) we get

(k.2) A =2 + Lm
r, = 5.33129
re = 1.70k26
rg = .77493
1o = L2781k
Yoo ™ .065388
r30 = .0254911
Yo = .0123814
r50 = .0070792

The computed eigenvalues, using the Green's function, are compared with
the exact eigenvalues in table (4.6). The routine for finding the eigen-
values of the matrix was only accura.. to three places.

As a second illustration we consider an inhomogeneous string, fixed
at one end and restricted to move transversally under an elastic force at
the other end. The differential equation g(verning the transverse displace-

ment y is of the form

-y = A2-xf)y, ¥(0) =0, 2y(1)+y‘(1) =0

see (2. p.252]. By differentiation and because of uniqueness “his problem

is equivalent to solving:



[(2-x2)"Yy" 1" = 23(2-x%)y

y(0)=y"(0) =0, 2y(1)+y'(1)=0, bLy"(1)+y"“(1)=0.

The Green's function for this problem is given by

(5.3)  o(x,8) = 2] a0 +xa(8) | + 75 (22 -1)(5x-2)- 4(x) - am(®),
. %[xz(g) +§Z(x)] + %(%x- 1)(%’;- 1)- 4(8) - &m(x),
where
Ux) = 75 (-3 + 203 - 45x + 28]
n(x) = f% [-x)+ + 12x° - 20x + 9].

The kernel K(x,§) of the integral equation is given by

(4.4) K(x,8) = J2-%x* [2-8 G(x,8)

and the entries in the equivalent matrix are given by

1

1
g = [ as [ atetZmHeVe) gty
MV 0 '

0

A bound for A is 5. Combining this with table (4.1) we get

(4.5) A=5
N 1.83
Xz = .585
rg .266
Fag .14685
o = .022445
rap = .00875

rho = .00h25

.00243

2]
U
o
1}

The computed eigenvalues, using the Green's function, are compared with

the estimatcs obtained by Collatz [3, p.257) in table (L4.7). 1In this

case, the routine for finding the eigenvalues of the matrix is accurate

to three decimals.

26

x <€
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(4.6)
Twirling Shaft
Eigenvalues computed Exact Actual Error | Theoretical error
via Green's function | eigenvalues ., estimate for A =2+im
Xl 15.99950 16.00000 .000050 .0124
X2 .9999758 1.00000 .000025 .0124
X3 .1975536 .197531 .00LO00
Xh .0624986 .062500 .000002
XS .0255906 .025600 .000009
X6 .0123447 .0123457 .000001
k7 . 0066600 .0066639 .000003
X8 .0039062 .0039062 .0
X9 .0C24354 .00241Y4 .000021
XlO .0015999 .001600 .000001
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